A Positive Radial Product Formula for the Dunkl Kernel
نویسنده
چکیده
It is an open conjecture that generalized Bessel functions associated with root systems have a positive product formula for non-negative multiplicity parameters of the associated Dunkl operators. In this paper, a partial result towards this conjecture is proven, namely a positive radial product formula for the non-symmetric counterpart of the generalized Bessel function, the Dunkl kernel. Radial hereby means that one of the factors in the product formula is replaced by its mean over a sphere. The key to this product formula is a positivity result for the Dunkl-type spherical mean operator. It can also be interpreted in the sense that the Dunkl-type generalized translation of radial functions is positivity-preserving. As an application, we construct Dunkl-type homogeneous Markov processes associated with radial probability distributions.
منابع مشابه
Opdam’s hypergeometric functions: product formula and convolution structure in dimension 1
Let G (α,β) λ be the eigenfunctions of the Dunkl–Cherednik operator T on R. In this paper we express the product G (α,β) λ (x)G (α,β) λ (y) as an integral in terms of G (α,β) λ (z) with an explicit kernel. In general this kernel is not positive. Furthermore, by taking the so–called rational limit, we recover the product formula of M. Rösler for the Dunkl kernel. We then define and study a convo...
متن کامل5 J un 1 99 7 Multivariable Al - Salam & Carlitz polynomials associated with the type A q - Dunkl kernel
The Al-Salam & Carlitz polynomials are q-generalizations of the classical Hermite polynomials. Multivariable generalizations of these polynomials are introduced via a generating function involving a multivariable hypergeometric function which is the q-analogue of the type-A Dunkl integral kernel. An eigenoperator is established for these polynomials and this is used to prove orthogonality with ...
متن کاملDunkl Translation and Uncentered Maximal Operator on the Real Line
On the real line, the Dunkl operators are differential-difference operators introduced in 1989 by Dunkl [1] and are denoted by Λα, where α is a real parameter > −1/2. These operators are associated with the reflection group Z2 on R. The Dunkl kernel Eα is used to define the Dunkl transform α which was introduced by Dunkl in [2]. Rösler in [3] shows that the Dunkl kernels verify a product formul...
متن کاملGeneralization of Titchmarsh's Theorem for the Dunkl Transform
Using a generalized spherical mean operator, we obtain a generalization of Titchmarsh's theorem for the Dunkl transform for functions satisfying the ('; p)-Dunkl Lipschitz condition in the space Lp(Rd;wl(x)dx), 1 < p 6 2, where wl is a weight function invariant under the action of an associated re ection group.
متن کاملRadial Dunkl Processes Associated with Dihedral Systems
We give some interest in radial Dunkl processes associated with dihedral systems. We write down the semi group density and as a by-product the generalized Bessel function and the W -invariant generalized Hermite polynomials. Then, a skew product decomposition, involving only independent Bessel processes, is given and the tail distribution of the first hitting time of boundary of the Weyl chambe...
متن کامل